Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.

Identifieur interne : 000521 ( Main/Exploration ); précédent : 000520; suivant : 000522

Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.

Auteurs : RBID : pubmed:24076624

Abstract

The structural properties and the strain state of InGaN/GaN superlattices embedded in GaN nanowires were analyzed as a function of superlattice growth temperature, using complementary transmission electron microscopy techniques supplemented by optical analysis using photoluminescence and spatially resolved microphotoluminescence spectroscopy. A truncated pyramidal shape was observed for the 4 nm thick InGaN inclusions, where their (0001¯) central facet was delimited by six-fold {101¯l} facets towards the m-plane sidewalls of the nanowires. The defect content of the nanowires comprised multiple basal stacking faults localized at the GaN base/superlattice interface, causing the formation of zinc-blende cubic regions, and often single stacking faults at the GaN/InGaN bilayer interfaces. No misfit dislocations or cracks were detected in the heterostructure, implying a fully strained configuration. Geometrical phase analysis showed a rather uniform radial distribution of elastic strain in the (0001¯) facet of the InGaN inclusions. Depending on the superlattice growth temperature, the elastic strain energy is partitioned among the successive InGaN/GaN layers in the case of low-temperature growth, while at higher superlattice growth temperature the in-plane tensile misfit strain of the GaN barriers is accommodated through restrained diffusion of indium from the preceding InGaN layers. The corresponding In contents of the central facet were estimated at 0.42 and 0.25, respectively. However, in the latter case, successful reproduction of the experimental electron microscopy images by image simulations was only feasible, allowing for a much higher occupancy of indium adatoms at lattice sites of the semipolar facets, compared to the invariable 25% assigned to the polar facet. Thus, a high complexity in indium incorporation and strain allocation between the different crystallographic facets of the InGaN inclusions is anticipated and supported by the results of photoluminescence and spatially resolved microphotoluminescence spectroscopy.

DOI: 10.1088/0957-4484/24/43/435702
PubMed: 24076624

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.</title>
<author>
<name sortKey="Kehagias, Th" uniqKey="Kehagias T">Th Kehagias</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dimitrakopulos, G P" uniqKey="Dimitrakopulos G">G P Dimitrakopulos</name>
</author>
<author>
<name sortKey="Becker, P" uniqKey="Becker P">P Becker</name>
</author>
<author>
<name sortKey="Kioseoglou, J" uniqKey="Kioseoglou J">J Kioseoglou</name>
</author>
<author>
<name sortKey="Furtmayr, F" uniqKey="Furtmayr F">F Furtmayr</name>
</author>
<author>
<name sortKey="Koukoula, T" uniqKey="Koukoula T">T Koukoula</name>
</author>
<author>
<name sortKey="H Usler, I" uniqKey="H Usler I">I Häusler</name>
</author>
<author>
<name sortKey="Chernikov, A" uniqKey="Chernikov A">A Chernikov</name>
</author>
<author>
<name sortKey="Chatterjee, S" uniqKey="Chatterjee S">S Chatterjee</name>
</author>
<author>
<name sortKey="Karakostas, Th" uniqKey="Karakostas T">Th Karakostas</name>
</author>
<author>
<name sortKey="Solowan, H M" uniqKey="Solowan H">H-M Solowan</name>
</author>
<author>
<name sortKey="Schwarz, U T" uniqKey="Schwarz U">U T Schwarz</name>
</author>
<author>
<name sortKey="Eickhoff, M" uniqKey="Eickhoff M">M Eickhoff</name>
</author>
<author>
<name sortKey="Komninou, Ph" uniqKey="Komninou P">Ph Komninou</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1088/0957-4484/24/43/435702</idno>
<idno type="RBID">pubmed:24076624</idno>
<idno type="pmid">24076624</idno>
<idno type="wicri:Area/Main/Corpus">000390</idno>
<idno type="wicri:Area/Main/Curation">000390</idno>
<idno type="wicri:Area/Main/Exploration">000521</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The structural properties and the strain state of InGaN/GaN superlattices embedded in GaN nanowires were analyzed as a function of superlattice growth temperature, using complementary transmission electron microscopy techniques supplemented by optical analysis using photoluminescence and spatially resolved microphotoluminescence spectroscopy. A truncated pyramidal shape was observed for the 4 nm thick InGaN inclusions, where their (0001¯) central facet was delimited by six-fold {101¯l} facets towards the m-plane sidewalls of the nanowires. The defect content of the nanowires comprised multiple basal stacking faults localized at the GaN base/superlattice interface, causing the formation of zinc-blende cubic regions, and often single stacking faults at the GaN/InGaN bilayer interfaces. No misfit dislocations or cracks were detected in the heterostructure, implying a fully strained configuration. Geometrical phase analysis showed a rather uniform radial distribution of elastic strain in the (0001¯) facet of the InGaN inclusions. Depending on the superlattice growth temperature, the elastic strain energy is partitioned among the successive InGaN/GaN layers in the case of low-temperature growth, while at higher superlattice growth temperature the in-plane tensile misfit strain of the GaN barriers is accommodated through restrained diffusion of indium from the preceding InGaN layers. The corresponding In contents of the central facet were estimated at 0.42 and 0.25, respectively. However, in the latter case, successful reproduction of the experimental electron microscopy images by image simulations was only feasible, allowing for a much higher occupancy of indium adatoms at lattice sites of the semipolar facets, compared to the invariable 25% assigned to the polar facet. Thus, a high complexity in indium incorporation and strain allocation between the different crystallographic facets of the InGaN inclusions is anticipated and supported by the results of photoluminescence and spatially resolved microphotoluminescence spectroscopy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">24076624</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6528</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>43</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Nanotechnology</Title>
<ISOAbbreviation>Nanotechnology</ISOAbbreviation>
</Journal>
<ArticleTitle>Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.</ArticleTitle>
<Pagination>
<MedlinePgn>435702</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/0957-4484/24/43/435702</ELocationID>
<Abstract>
<AbstractText>The structural properties and the strain state of InGaN/GaN superlattices embedded in GaN nanowires were analyzed as a function of superlattice growth temperature, using complementary transmission electron microscopy techniques supplemented by optical analysis using photoluminescence and spatially resolved microphotoluminescence spectroscopy. A truncated pyramidal shape was observed for the 4 nm thick InGaN inclusions, where their (0001¯) central facet was delimited by six-fold {101¯l} facets towards the m-plane sidewalls of the nanowires. The defect content of the nanowires comprised multiple basal stacking faults localized at the GaN base/superlattice interface, causing the formation of zinc-blende cubic regions, and often single stacking faults at the GaN/InGaN bilayer interfaces. No misfit dislocations or cracks were detected in the heterostructure, implying a fully strained configuration. Geometrical phase analysis showed a rather uniform radial distribution of elastic strain in the (0001¯) facet of the InGaN inclusions. Depending on the superlattice growth temperature, the elastic strain energy is partitioned among the successive InGaN/GaN layers in the case of low-temperature growth, while at higher superlattice growth temperature the in-plane tensile misfit strain of the GaN barriers is accommodated through restrained diffusion of indium from the preceding InGaN layers. The corresponding In contents of the central facet were estimated at 0.42 and 0.25, respectively. However, in the latter case, successful reproduction of the experimental electron microscopy images by image simulations was only feasible, allowing for a much higher occupancy of indium adatoms at lattice sites of the semipolar facets, compared to the invariable 25% assigned to the polar facet. Thus, a high complexity in indium incorporation and strain allocation between the different crystallographic facets of the InGaN inclusions is anticipated and supported by the results of photoluminescence and spatially resolved microphotoluminescence spectroscopy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kehagias</LastName>
<ForeName>Th</ForeName>
<Initials>T</Initials>
<Affiliation>Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Dimitrakopulos</LastName>
<ForeName>G P</ForeName>
<Initials>GP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kioseoglou</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Furtmayr</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koukoula</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Häusler</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chernikov</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chatterjee</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karakostas</LastName>
<ForeName>Th</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Solowan</LastName>
<ForeName>H-M</ForeName>
<Initials>HM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schwarz</LastName>
<ForeName>U T</ForeName>
<Initials>UT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eickhoff</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Komninou</LastName>
<ForeName>Ph</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotechnology</MedlineTA>
<NlmUniqueID>101241272</NlmUniqueID>
<ISSNLinking>0957-4484</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>9</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1088/0957-4484/24/43/435702</ArticleId>
<ArticleId IdType="pubmed">24076624</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000521 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000521 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24076624
   |texte=   Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24076624" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024